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Every Single One Matters
Invasive plants are always severe problems for human beings. They always have a negative

influence on the local ecosystem, economy, and even people’s health. The dandelion is one of the
annoying invasive plants for gardeners. It is known for its ability to spread across a large area and adapt
to different conditions. Many factors can influence the growth of dandelions, such as temperature,
rainfall, and sunlight. In our work, we build a model to simulate, visualize, describe, and discuss the
impact of different factors.

The first problem requires a model to predict the dispersion of dandelions, considering climate
factors. To this end, we extract various climate, geography, and biodiversity data from the Google
Earth Engine. Our model incorporates temperature in a proposed germination model; temperature,
humidity, solar radiation, and pH in the growth model; and wind speed, direction, and properties
of plants in the seed spreading model. We utilize the Cellular Automata concept and simulate
the dispersion of three invasive plants in 14 locations. Results reveal significant differences in
the coverage rate among different locations. The sensitivity analysis shows clear dependency and
correlation of climate effects based on our model.

An invasive impact factor should solve the second problem to describe the level of impact of
an invasive plant in a region. We choose various objective and subjective indicators, including
climate, human activities, vegetation, etc. The simulation results from the first problem are also
extracted as indicators. We use the Analytic Network Process and Technique for Order Preference
by Similarity to Ideal Solution (or TOPSIS) to estimate accessing factors. The impact of three kinds
of invasive plants, including dandelions, Centaurea Solstitialis and Solidago Canadensis, in 14
worldwide locations is quantified by the proposed Impact Factor which incorporates TOPSIS. Fitting
on data of dandelions and evaluating the fitted model on the other two plants, results show that the
Impact Factor could accurately identify locations that have been invaded.

In conclusion, by building a mathematical model, we can have a deep understanding of the spread
of these invasive plants and quantify their impact factor. In this case, we can control these plants
better and make good use of them. If we know them quite well and make good use of them, instead of
destroying the ecosystem and local economy, these invasive plants can positively influence citizens’
health.

AI Use Report: We did not use AI to support our modeling and writing.
Keywords: Invasive plants, Cellular Automata, Analytic Network Process, TOPSIS
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1 Introduction
1.1 Background

Invasive species are serious problems in many places. An invasive species, also known as an alien
species, is a non-native organism that becomes popular in a specific area. It is extremely harmful to
the local ecosystem, economy, and human health. These species reproduce quickly and push aside
native plants because of their lack of natural predators and controls in new habitats. It is very harmful
to local biodiversity and can even cause the extinction of native species. Hence, human beings need
to control invasive species and increase the biodiversity.

In this case, we need to have a deep understanding of the growth and the spread of invasive plants.
The growth of invasive plants is closely related to temperature, rainfall, and sunlight. Only when we
know how these factors contribute to the growth of invasive plants, can we find a perfect solution to
analyze the impact of the invasion and improve the local ecosystem.

Among these invasive species, dandelion is a headache for many gardeners. Dandelion is known
for its notable bright flowers and distinctive "puffball" seed head. With a parachute-like structure,
dandelion can spread its seeds everywhere through wind. However, even though dandelion is native
to Eurasia, this plant now can be found worldwide. It invades many different areas, which causes
great harm to the local ecosystem. The dandelion has an amazing ability to reproduce and adapt. The
dandelion can quickly cover the whole area if the condition is available. It will plunder other plants’
living space and nutrition, leading to the disappearance of other native plants. Some research also
finds out that the average distance dandelion seeds can travel is as far as 97 kilometers. As long as
dandelions take root in the soil, it is very hard for people to get rid of them, for their roots can grow
to 6 to 18 inches long.

1.2 Problem Restatement
For Problem 1, assuming a mature dandelion exists adjacently to open land, a model is required to

predict the dispersion of dandelions in 1, 2, 3, 6, and 12 months, considering the impact of climates on
the growth of dandelions. A simulation approach that can integrate various environmental conditions
should be proposed to accurately predict the dispersion results.

For Problem 2, we should try to discuss the complicated relationship between dandelions, other
flora, and human beings. It is often regarded as an invasive species because of its ability to thrive in
different areas. However, every part of the dandelion is edible and can be used as medicine. This also
applies to other invasive plants. Thus, we need to propose an impact factor, which should be tested
on dandelions, using mathematical models to evaluate the impact of an invasive plant.

1.3 Our work
The workflow of our work is illustrated in Fig. 1.1. Variables required for modeling are first

extracted from Google Earth Engine and are applied to the modeling of both problems. For the
first problem, numerical formulations are constructed to model the behaviors of germination, growth,
and wind dispersion of seeds related to climate, physics, and geographic variables, and are utilized
in a proposed Cellular Automata algorithm to simulate the spreading of invasive plants, especially
dandelions. For the second problem, an Analytic Network Process is built to model the relationship
among various variables, which considers the effects of climate, physics, geography, biodiversity, and
human activity, after which a model of impact factor is constructed using TOPSIS. For both problems,
we analyze the results and discuss the sensitivity, advantages, and disadvantages of our models.
Besides dandelions, the other two invasive plants selected for the second problem are Centaurea
solstitialis and Solidago canadensis.
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Figure 1.1: The workflow of our work.

2 Assumptions and Justifications
Assumption & Justification 1. The investigated open land is assumed to be perfectly flat. The

simulation of complex and randomized geographical characteristics is beyond our scope.
Assumption & Justification 2. The investigated one-year period starts from 1st, January 2019 to

31st, December 2019 for locations in the northern hemisphere, and from 1st, July 2018 to 30th, June
2019 for locations in the southern hemisphere. The starting time of the requested one-year period for
the problem may influence the results because of seasonality, thus should be restricted.

Assumption & Justification 3. Once plants become mature, their seeds finish spreading in one
day. The flying time of seeds is relatively short compared to the life cycle of the entire plant, which
can be ignored.

Assumption & Justification 4. When the precipitation is high enough (higher than 0.2 m/day),
seed dispersion will be suspended and seeds will be destroyed. This assumption is important for
modeling plants like dandelions that expose their seeds to the outside.

Assumption & Justification 5. Effects of influential variables on other plants considered in this
context are the same as those on dandelions if they are not found in the literature. To the best of
our knowledge and time, we have already found and applied influences of the temperature, pH, and
heights of the two additionally considered plants. If more time and resources are available, the specific
properties can be obtained from experiments.

3 Variables
Symbol Description Symbol Description
µ Mean z0 Roughness length
σ Standard deviation h Displacement height
T Temperature P The annual productional value of agriculture, forestry, and fishing of the country
t The specific date rprop The propagation rate
Tbest The best temperature for seeds to grow Sarea Resolution of the environment data
R The accumulated growth of a plant Scountry The area of the country
r The growth ratio value in the history I+ The set of all positive indicators
h Specific humidity I− The set of all negative indicators
s Solar radiation S+ Positive ideal solution
D Dispersal distance S− Negative ideal solution
K Kármán constant IF Impact factors
F Terminal velocity D− The distance of a data record to the negative ideal solution
H Height of seed release D+ The distance of a data record to the positive ideal solution
W Vertical wind speed
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4 Data acquisition
In this context, we will consider several influential variables related to climate, physics, vegetation,

geography, and humans. Before we explain their effects on our modeling in the following sections,
the data acquisition approach is first described in this section.

We obtain influential variables in the form of time-series data or scalar data through the Google
Earth Engine Code Editor, a cloud computing platform for satellite imagery and geospatial datasets.
The source and information of each variable can be seen in Table 4.1. Variables are from different
public datasets and have different pixel resolutions. They are reprojected to a consistent 55.7 km
resolution by aggregating and averaging the original pixels. For simplification and efficiency, we will
simulate the daily behavior of plants, so the hourly variable zero plane displacement height is first
averaged to daily data. We extract time-series data of these variables from 1st, January 2019 to 31st,
December 2019 for locations in the northern hemisphere, and from 1st, July 2018 to 30th, June 2019
for locations in the southern hemisphere to get consistent climate periods. If some values are absent
in time-series data, they are imputed by the average of presence values. If a scalar variable is invalid
for a location, the value is imputed using the average value of other locations.

All 14 locations are considered in our results. Three selected locations are reported to have been
invaded by dandelions. Similarly, for the additionally investigated plants, Centaurea solstitialis and
Solidago canadensis, four and three locations are selected, respectively. These locations can be seen
in Table 4.3. To investigate the influence of different climates, we select four more locations with
four major climate types, i.e. tropical monsoon climate, temperate continental climate, temperate
monsoon climate, and Mediterranean climate, respectively, as shown in Table 4.3.

Examples of the collected time-series data for three locations used in this section are shown in
Fig. 4.2.

Table 4.1: Data sources and information of spatial-temporal influential variables obtained from
Google Earth Engine.

Category Variable Dataset Resolution (m) Reduced Resolution (m) Time scale Unit
Climate Soil surface temperature ERA5-Land 11132 55659 Daily Celsius
Climate Air temperature (2 m above surface) ERA5-Land 11132 55659 Daily Celsius
Climate Total precipitation ERA5-Land 11132 55659 Daily m
Climate Eastward wind speed (10 m above surface) ERA5-Land 11132 55659 Daily m/s
Climate Northward wind speed (10 m above surface) ERA5-Land 11132 55659 Daily m/s
Climate Eastward wind speed (10 m above surface) ERA5-Land 11132 55659 Hourly m/s
Climate Northward wind speed (10 m above surface) ERA5-Land 11132 55659 Hourly m/s
Climate Total net solar radiation ERA5-Land 11132 55659 Daily J/m2

Climate Specific humidity GLDAS-2.1 27830 55659 4-hourly Mass fraction
Physics Zero plane displacement height MERRA-2 69375 55659 Hourly m

Geography Soil surface pH OpenLandMap 250 55659 / 10x
Geography Multi-Scale Topographic Position Index ERGo 270 55659 / /
Vegetation Enhanced Vegetation Index MODIS 463 55659 Daily /
Vegetation Normalized Difference Vegetation Index MODIS 463 55659 Daily /
Vegetation Topographic diversity ERGo 270 55659 / /

Human Percent of grass cover CGLS 100 55659 Yearly %
Human Percent of shrub cover CGLS 100 55659 Yearly %
Human Percent of cropland cover CGLS 100 55659 Yearly %
Human Percent of urban cover CGLS 100 55659 Yearly %

5 Simulation of wind dispersion of plant seeds
In Section 5.1, we introduce influential variables considered in our model. In Section 5.2, we

describe the source of the data used in our model. In Section 5.3, we build a model to consider the
life cycle of plants whose seeds are dispersed by wind, which is divided into three separate stages:
germination, growth, and seed dispersion considering wind. In Section 5.4, we perform Cellular
Automata simulations under various conditions, analyze results, and draw quantified conclusions.
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Table 4.2: Locations considered for three plants. Each of the locations has been invaded by one of
these plants.

Country City/State/Region Longitude Latitude The reported invasive plant Ref.
Chile The Andes at central Chile -69.71 -26.77 Taraxacum officinale [4]
Japan North Hokkaido 142.27 44.82 Taraxacum officinale [8, 9]

United States State of Alaska -151.17 64.93 Taraxacum officinale [10]
China Shiyan 110.80 32.63 Solidago canadensis [14]
China Shaoxing 120.58 29.99 Solidago canadensis [16]

Belarus Homyel City 30.99 52.43 Solidago canadensis [15]
China Yili 81.31 43.90 Centaurea solstitialis [11]

United States State of Oregon -122.68 45.51 Centaurea solstitialis [12]
United States State of California -118.16 34.36 Centaurea solstitialis [12]
United States State of Ohio -83.01 39.96 Centaurea solstitialis [13]

Table 4.3: Locations considered to investigate different climates.

Country City/State/Region Longitude Latitude Climate
Saudi Arabia Riyadh 46.66 24.70 Tropical monsoon

Germany Berlin 13.15 52.61 Temperate continental
China Beĳing 116.80 40.13 Temperate monsoon

United States San Francisco -122.10 37.90 Mediterranean

5.1 Influential variables
To determine the model of the spread pattern of the dandelion, we discover the influential variables

of its growing process and spreading process. In the growing process, temperature, soil pH, solar
radiation, and humidity have a significant impact on the speed of this period. Also, the wind has an
impact on the spread of the dandelion seeds.[1]

Temperature has an important impact on dandelion growth. Too high or too low temperatures
weaken their photosynthesis, resulting in slower growth. In addition, high temperatures can also
cause water evaporation and weaken enzyme activity, inhibiting the growth of dandelions. Therefore,
there is an optimal temperature for the growth of dandelions, and dandelions grow fastest at this
temperature. Above or below its optimum temperature will slow down its growth rate.[2]

Similar to many other plants, humidity and solar radiation influence the growth of the dandelion
in a positive way, which gives it a favorable situation to grow. The higher the humidity and solar
radiation, the faster the dandelion grows.

Soil pH is another factor influencing the growth speed of the dandelion. Soil with inappropriate
pH will reduce the effective components of the soil. For example, in highly alkaline soil, the solubility
and effectiveness of calcium and magnesium elements will decrease. Soil that is too acidic or too
alkaline will inhibit the activity of soil microorganisms. Similar to the temperature, there is a most
optimal pH, where the dandelion grows the fastest.[3]

Wind is the factor influencing the spread of the dandelion seeds. The wind speed and the direction
of the wind determine the position the seed finally arrives, it consequently forms the final distribution
of the dandelion.

Extreme weather is also considered. We assume that when the precipitation is high enough (higher
than 0.2 m/day), seed dispersion will be suspended and seeds will be destroyed.

5.2 The model of growth
In this section, we formulate the germination, growth, and seed dispersion to perform cellular

automata simulations.



Team # 13719 Page 6 of 23

Figure 4.1: A map of all 14 locations considered, containing ten locations shown in Table 4.2 that one
of the investigated plants has invaded and four locations shown in Table 4.3 occupied by four major
climate types.
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Figure 4.2: Examples of the collected time-series data for three locations.

5.2.1 Germination probability
Seeds may not grow up to a plant. Hoya et al. [17] examined the cumulative germination

probability of tetraploid dandelions concerning time under different temperatures, as shown in Fig. 5.1.
It can be concluded that less than 70% of seeds can germinate.

An empirical formula can be concluded according to results from Hoya et. al [17]. Inspired by
the cumulative distribution function (CDF) of the normal distribution, and assuming that the mean µ
and standard deviation σ of the normal distribution are functions of the temperature, the cumulative
germination probability can be defined with the observed 70% limitation as

Φg(t, T ) =
0.7

σ(T )
√
2π

∫ t

−∞
exp

{
− [u− µ(T )]2

2σ2(T )

}
du. (5.1)
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Figure 5.1: The cumulative germination probability data of tetraploid dandelions concerning time
under different temperatures, and curves fitted using Eq. (5.1). Data points are obtained from Hoya et
al. [17].

The formula is numerically evaluated by the norm.cdf function in the scipy Python package and can
be fitted using curves of different temperatures through the curve_fit function in scipy, obtaining
mean values and standard deviation values for each temperature; therefore, µ(T ) and σ(T ) can be
fitted by assuming that they are quadratic functions, resulting in

µ(T ) = 0.1698T 2 − 5.928T + 62.45

σ(T ) = 0.02813T 2 − 0.8233T + 10.38

}
, (5.2)

as shown in Fig. 5.2.
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Figure 5.2: Left: Fitted mean µ and standard deviation σ values from Eq. (5.1) against temperature
values T , and further quadratic fitting of µ(T ) and σ(T ). Right: Germination probability concerning
the index of the day, given by the fitted µ(T ) and σ(T ) shown on the left and Eq. (5.1).

The cumulative probability Eq. (5.1) can also be expressed as

Φg(t, T ) = Φg(t− 1, T ) + [1− Φg(t− 1, T )]pg(t, T ), (5.3)

where pg(t, T ) is the probability that the seed, which has not germinated before the day t, germinates
at the day t. The expression leads to

pg(t, T ) =
Φg(t, T )− Φg(t− 1, T )

1− Φg(t− 1, T )
, (5.4)
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which means that the germination probability of a seed can be directly given by the index of the day
t and the temperature of the day by substituting Eq. (5.1) and Eq. (5.2) into the above equation, as
shown in Fig. 5.2.

Making use of the above formulations, some useful conclusions can be drawn for our model.
The fitted µ(T ) is the day that the cumulative probability increases most rapidly under a certain
temperature (∂Φg(t, T )/∂t reaches its maxima at t = µ(T )); therefore, its minimum point is regarded
as the most suitable temperature Tbest for germination. According to Eq. (5.2), the most suitable
temperature for germination is 17.45 ◦C. Under the most suitable temperature, using a Monte Carlo
Simulation for 10,000 seeds, the average number of days needed for germination is 11.33.

A reminder is that, under the most suitable germination temperature, the maximum point of the
probability for a seed to germinate pg(t, T = Tbest) does not coincide with (and is higher than) the
maximum point of the increasing rate of the cumulative probability dΦg(t, T = Tbest)/dt because
the number of seeds that have not germinated is decreasing day by day. We also stress that although
Eq. (5.1) is modified from the form of the CDF of the normal distribution mainly because of its trend
and its asymptotic line, it can be any other form such as a polynomial and pg(t, T ) is not conceptually
related to the probability distribution function of the normal distribution.
5.2.2 Growth

We start by defining the accumulated growth

R =
t∑

i=1

r(t), (5.5)

which is the summation of growth ratio r(t) values in the history. Starting from 0 on the germination
day, the accumulated growth increases according to the growth ratio each day, which should represent
the influence of influential variables. When R exceeds 1, the plant is regarded as mature and can
spread seeds.

The relationships between influential variables and the growth ratio are modeled. Four main
factors influencing the growth of the dandelions are considered: temperature T , specific humidity h,
solar radiation s, and soil pH. They are first normalized by the following rule:

x =


0, x < xmin,

x− xmin

xmax − xmin

, xmin ≤ x ≤ xmax,

1, x > xmax,

(5.6)

where x might be T , h, s, or pH. For xmin and xmax, temperature T and pH may have certain ranges
in which a certain plant can grow; however, we assume that plants can grow under all humidity and
solar radiation conditions and only the growth rate varies, so xmin and xmax are defined by global
minimum and maximum values for h and s, obtained from their data sources. Next, four growth
parameters αT (T ), αh(h), αs(s), and αpH(pH) are introduced for these variables respectively, all of
which are between 0 and 1. According to the discussion of Section 5.1, the growth rate increases
with the increase of humidity and solar radiation. The tanh function is chosen to model the effect for
αh(h) and αs(s):

αmonotonic(x) = tanh(3x) =
e3x − e−3x

e3x + e−3x
, x ∈ [0, 1], (5.7)

where αmonotonic(x) might be replaced by αh(h) or αs(s). For temperature and pH, the growth rate
increases with the increase of temperature and pH until the most optional situation (say T best and
pHbest, respectively) and then decreases with the factors increasing. The tanh function is again used,
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but a platform-shaped function is constructed:

αplatform(x) =


tanh

(
3

x

xbest

)
, x ∈ [0, xbest)

− tanh

(
3

x− 1

1− xbest

)
, x ∈ [xbest, 1]

(5.8)

where αplatform(x) might be replaced by αT (T ) or αpH(pH). The function images of αmonotonic(x)
and αplatform(x) can be shown in Fig. 5.3.
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Figure 5.3: The functions of growth parameters given by Eq. (5.7) and Eq. (5.8). x is h or s for
αmonotonic(x), and is T or pH for αplatform(x).

With the expressions given by Eq. (5.7)-(5.8), the four introduced parameters are multiplied
together to get the growth index A(t) of a specific day t under the specific environment:

A(t) = αT (T (t)) · αh(h(t)) · αs(s(t)) · αp(pH(t)). (5.9)

Finally, the growth ratio is modeled by

r(t) =
1

dmax

(
dmax

dmin

)A(t)

+N
(
0,

1

4

(
1

dmin

− 1

dmax

))
, (5.10)

where dmin = 65 is the lowest number of days needed for dandelions to be mature with the fastest
growth rate while dmax = 118 [6, 7] is the highest one, and N represents a random variable drawn
from the normal distribution, which is added to introduce randomness on growth. As shown in
Fig. 5.4, the growth rate under the most suitable environment, which is αh(h) = 1, αs(s) = 1,
αT (T ) = T best, and αpH(pH) = pHbest, approximately reaches 1, and the number of days required
for the accumulated growth R to exceed 1 (i.e., mature) under the ideal environment is approximately
dmin if no randomness is considered. Under a worse (or not such ideal) environment with a series of
lower growth index A(t), the number of days needed will be higher than dmin, until A(t) approximates
0 so that the number of days needed approximates dmax.

A remark should be given here. Germination of seeds is considered only related to the temperature,
different from growth. Although other influential factors are not considered in germination, they will
still prevent growth if the environment is not suitable for the plant. Consequently, they will not further
spread seeds. Therefore, the calculated coverage rate only considers plants grown to a specific
level, i.e. R > 0.1.
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Figure 5.4: Left: The number of days needed to mature from germination without randomness,
assuming that one influential variable is given, and others are fixed at their most suitable values for
growth. x is h or s for αmonotonic(x), and is T or pH for αplatform(x). Right: The number of days
needed to mature without randomness given a fixed growth index.

5.2.3 Wind dispersion
Wind effects on the dispersion of seeds are modeled in this section. When a plant grows up

(the accumulated growth R from Eq. (5.5) exceeds 1), the plant finishes generating seeds that can be
dispersed. If the type of plant, such as dandelions, spreads its seeds by wind, the wind direction, wind
speed, and properties of seeds may affect the landing positions.

The wind speed and properties of seeds are first used to model the landing distance of a seed from
its origin plant. A model for seed dispersal by wind is proposed by Nathan et al. [5] is employed in
our modeling:

D =
u∗

K(F −W )

(
(H − h) ln

(
H − h

ez0

)
+ z0

)
, (5.11)

where D is the dispersion distance, u∗ is the friction velocity estimated by

u∗ =
K · U10

ln 10−h
z0

, (5.12)

in which U10 is the horizontal wind speed measured 10 m above the ground, K ≈ 0.40 is the von
Kármán constant, F is the terminal velocity, H is the height of seed release, W is the vertical
wind speed (positive if upward), z0 is the roughness length (the height at which the wind speed is
theoretically equal to zero because of shear forces), and h is the displacement height, which scales
the vertical distribution of those shear forces in the surface canopy.

The wind direction is considered to model the landing position. The daily wind direction average
is defined as a radian angle obtained by analyzing the arctangent value of the ratio of two perpendicular
velocity components. Additionally, since we obtain daily averaged values of influential variables, the
uncertainty of wind direction in a day should also be counted. Therefore, we obtain the hourly wind
direction data in a day in the same way and calculate the standard deviation of the hourly data for each
day. Eventually, with the average and standard deviation calculated in advance, we obtain a normally
distributed random daily wind direction for each spread seed.

Meanwhile, the height from which each seed starts spreading may differ, even if the seeds start
from the same plant. This randomness is realized by selecting a random height between the general
maximum and minimum of the height of a plant species, such as a dandelion.
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5.2.4 Cellular Automata simulation
With the germination and growth properties of plants, and wind dispersion characteristics at hand,

the behavior of the life cycle of a plant can be explicitly simulated and analyzed using Cellular
Automata, a modeling technique that discretizes both time and space. Cells in regular grids follow
the same rule to update their status according to themselves and their surroundings at each time step,
building up an automatic and dynamic system that does not require global mathematical or physical
formulations.

To simulate the growth and spreading of plants, a Cellular Automata algorithm is modeled. A
schematic flow diagram is shown in Fig. 5.5 to address the process of the proposed algorithm. The
investigated space is discretized as a square grid, where each cell in the grid contains multiple plants.
The time step is one day, which is consistent with the timescale of our time-series datasets.
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Define the grid

Assign the first mature plant

For each day

For each plant in each cell

Generate a random number to 

check the germination probability

Germinated?

Calculate the growth ratio

Add the growth ratio to 

the accumulated growth

For each seed

Calculate the dispersion 

distance and direction

Find and add a new
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For each plant in each cell

No

Yes

No

End?

Analyze coverage 
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Maximum number of 
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No

Yes
Mature?

No

Yes

Yes

Figure 5.5: The flow diagram of the Cellular Automata simulation.

Step 1: At each time step, the germination of each seed in each cell is first simulated. A random
number is drawn from the standard uniform distribution and is compared with the probability that the
seed germinates on the current number of days from the day of planting (see Eq. (5.4)). We stress
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that the minimum planting distance is considered. Resources, such as nutrients, solar radiation, and
space, are limited; therefore, given the area of the cell (which is set to 1 m2), the maximum number
of germinated plants is consequently limited to 100 plants per cell.

Step 2: For each germinated plant in each cell, the growth ratio of the plant on the day r(t) is
calculated by Eq. (5.10) and is added to its accumulated growth R if R has not exceeded 1 yet (i.e.,
the plant is not mature).

Step 3: After simulating germination and growth, the spreading of seeds is then simulated. For
each seed of each mature plant (R > 1) in each cell, the wind speed and other properties are first
used to estimate the spreading distance using Eq. (5.11). Note that several randomized variables are
considered for plants or seeds. Then the randomized wind direction is sampled to determine the
termination location of the seed. Finally, the plant will not generate seeds [18] or be counted in the
growth calculation.

Step 4: After termination locations of all seeds in all cells are calculated and gathered, the
number of new seeds in each cell is calculated, and these new seeds are planted and are waited for the
germination check in Step 1 in the next time step.

At the end of each time step, the coverage rate is calculated by summing up all mature plants which
is then divided by the maximum possible number of plants in the area, limited by the above-mentioned
minimum planting distance. Two different definitions are used to calculate the coverage rate:
Area Related: The ratio of covered area that contains plants whose accumulated growth R > 0.1.
Number Related: The ratio of plants whose accumulated growth R > 0.1, to the total capacity of
the entire area.

The simulation of the wind dispersion involves considerable randomness. The following Table
5.1 shows the variables that involve randomness and their distribution. In the table, the standard
deviation of the terminal falling velocity is estimated via a special method: According to the previous
research by Sun and Guo [19], the terminal falling velocity of the dandelion seed is proportional to its
gravity to the power of 0.75. Therefore, given the weight range of regular dandelion seeds (which is
0.8-2.0 g per thousand seeds), the standard deviation of the terminal falling velocity can be estimated.

Table 5.1: Randomness involved in wind dispersion simulation.

Variable Name Type of Randomness Parameters
Number of spread seed Uniform in a limited range Number of seeds on each flower head (151-200),

Uniform in a limited range Number of flower heads (1-10)
Wind direction Normal distribution Average (daily wind direction),

Normal distribution Standard deviation (obtained from hourly wind direction)
Terminal falling velocity Normal distribution Average (0.39 [20]),

Normal distribution Standard deviation (*estimated via special method)

During the simulation of the growth part, the properties of different plants are described by the
parameters listed in Table 5.2, which are later used to calculate the growth ratio increase of plants.
The rest of the variables considered in the simulation are decided by the environment and do not
involve randomness. They are included in the following Table 5.3.

Due to the randomness in our model, all simulations are repeatedly performed five times, and the
average values are obtained for analysis.

5.3 Results and discussion
5.3.1 Simulation

The simulation domain is a 200 m× 200 m square, but note that the calculation of coverage rates
is performed in a semi-circle with the area 1 hectare, and the initial plant is on the circle center
to meet the requirement of the problem. Since the wind direction matters in our simulations, the
effect of the angle of the semi-circle will be discussed below.
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Table 5.2: Properties of plants used in the simulations.

Parameter Taraxacum officinale Solidago canadensis Centaurea solstitialis
Minimum Temperature (◦C) 0.0 -20.0 10.0
Maximum Temperature (◦C) 30.0 40.0 30.0

Best Temperature (◦C) 18.0 20.0 22.0
Minimum pH 4.0 4.8 5.5
Maximum pH 7.1 7.5 7.0

Best pH 8.0 6.2 6.5
Seed Spread Height Range (m) 0.05-0.45 0.30-0.90 0.10-1.00

Table 5.3: Nonrandom environmental factors

Variable Name Related Stage Detailed Influence
Precipitation (m per day) Wind dispersion All dispersion suspend when reaches 0.2

Zero-plane-displacement height (m) Wind dispersion See h in Eq. (5.11)
Roughness Length Wind dispersion Set to 0.03 [21]. See z0 in Eq. (5.11)

We perform the simulation on all 14 locations selected for the convenience of sensitivity analysis,
and the final results of Alaska, Chile, and Hokkaido are shown in Fig. 5.6. The coverage rates during
the year calculated in the 1-hectare semi-circle under two different definitions mentioned above
are illustrated in Fig. 5.7. Among the three selected locations, Chile suffers from dandelions most,
with more than 40% (and sometimes over 60%) of the land of the 1-hectare domain covered by
dandelions.

The number of dandelions increased dramatically during the last 3 months in Chile because
the dispersion might follow an exponential rule. However, the first impact on the coverage rate is
later than 100 days. We stress that the growth period (excluding germination time) of dandelions is
approximately 65 to 118 days. Considering that the average number of days required is around 11.3,
as shown in Section 5.2.1, and since the coverage rate is calculated for plants that have grown to
R > 0.1 (Section 5.2.2), the first impact on the coverage rate will be later than 100 days.

The increase in coverage rates shows clear seasonality in all cases. The number of days required for
dandelions to be mature might cluster around a certain value that depends on the environmental factors
(i.e. the growth ratio A) and are not the same because of the randomness in Eq. (5.10). Therefore,
the increase of the coverage is generally staircase-shaped but smooth. We can also observe that, in
Chile, the period between each dispersion break out is shorter than that in the other two locations,
suggesting a more suitable germination environment and a higher growth rate for dandelions, which
might be the main reason for the invasion report in Chile. Hopefully, this seasonality may give us some
inspiration in preventing the deterioration of dandelion invasions, such as taking measures before a
coming increase trend.

Moreover, in Fig. 5.7, we can observe a clear inclination of the dispersion. This may probably
be attributed to the prevailing wind direction and other reasons. Similarly, such property of wind
dispersion can also provide us with inspiration related to invasion prevention.
5.3.2 Sensitivity analysis

The relative location of the investigated 1-hectare land that the initial plant is adjacent to should
be discussed. The spreading of seeds heavily depends on the wind direction of the day and is partially
determined by the wind direction uncertainty. Starting from the angle shown in Fig. 5.6, the semi-
circle rotates anti-clock-wise and the coverage rates are calculated. As shown in Fig. 5.8 where
we select one of the repeated simulations to study the relative location, the difference in coverage is
significant for the evaluation of seed dispersion and plant invasion.

To validate the robustness and accuracy of our model, we simulate the dispersion of three plants



Team # 13719 Page 14 of 23

A
la

sk
a

1 month 2 months 3 months 6 months 12 months

C
hi

le
H

ok
ka

id
o

Chile Hokkaido

(1 hectare)

Alaska

Figure 5.6: Top: Dispersion of dandelions at 1, 2, 3, 6, and 12 months at different locations. Bottom
left: The 360th day of Alaska. Bottom middle: The 360th day of Chile. Bottom right: The 360th
day of Hokkaido. The area of the semicircle is 1 hectare, in which the coverage rates are calculated.

in 14 locations as shown in Table 4.2 and 4.3. Therefore, the sensitivity analysis can be directly
performed by analyzing the relationship between influential variables (annual average values of each
location) and the coverage rate. As shown in Fig. 5.9, all four influential variables are effective in our
model and have a positive correlation with the coverage rate, especially temperature and soil pH, to
whom the model is most sensitive. One of the reasons for the high correlation of temperature is that
germination is also related to the temperature while not related to others.
5.3.3 Advantages and disadvantages

The advantages of our model are: (1) The entire life cycle, including germination, growth, and
seed dispersion, is formulated. (2) The distribution of plants can be explicitly simulated using the
proposed Cellular Automata algorithm. (3) The Cellular Automata algorithm can be (and indeed is)
implemented in a parallel way, which significantly reduces computational time. (4) The results can
accurately reveal the influences of climate, geography, and properties of plants on the coverage of
invasive plants, which are robustly verified by sensitivity analysis.

Disadvantages can be concluded as (1) Although the effect of temperature on germination is
calibrated from experimental results, the formulations still contain empirical functions, which can all
be determined by sufficient experiments for each of the investigated plants. (2) The computational
time is still considerable although in parallel because repeated simulations should be done under all
considered situations for the model with uncertainty.
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Figure 5.7: Coverage rate in different locations. Shadows represent the biased standard deviation of
five repeated simulations.
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Figure 5.8: The effect of the angle of the investigated semi-circle. The results are from one of the
repeated simulations.

6 Modeling the impact of invasive species
In this part, we choose two other invasive plants, the Centaurea solstitialis and Solidago canadensis.

In our work, we mainly discuss their influences in the fourteen places (same as before). Another
sensitivity analysis is conducted to confirm our model of the ’impact factor’ of invasive species.

6.1 Invasive Species Indicators (ISI)
To comprehensively demonstrate the impact of invasive species on the ecological environment and

human society while considering the data accessibility, after multiple rounds of detailed discussions, an
indicator system named the Invasive Species Indicators (ISI) is established, where relevant parameters
describing the spreading trend and the social impact are included. Generally, ISI consists of 7 indicator
clusters, with a total number of 23 indicators to measure the impact of invasive species.

The indicator cluster of growth environment is influential in the spread of invasive species, where
the growth coefficients, the Multi-Scale Topographic Position Index (mTPI) describing the terrain
slope (geographical barriers), and the similarity of environmental conditions to the origin are scored
subjectively based on the environmental data acquired from Google Earth Engine.

Due to their correlations to biodiversity and the ecological resistance to invasive species, eco-
logical conditions including the Normalized Difference Vegetation Index (NDVI) and the Enhanced
Vegetation Index (EVI) which reflect the vegetation coverage are considered, besides a subjective
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Figure 5.9: The relation between the coverage rate and four influential variables.

score of ecosystem incompatibility, which is decided based on extensive literature review [27].
Since a full quantitative consideration of the potential impact on biodiversity is impossible to

realize due to the limited time and resources, we use the method of evaluating the current biodiversity
vulnerability of each region to substitute the process. Here the topographic diversity indicates the
ability of the habitat to support high plant diversity [24], the percentage of threatened plants [22], the
loss of vegetated land [23], and the percentage of protected areas [25] are presented to represent the
pressure and invasion-proof capability of the land and are accessed from the OECD database.

To quantify the risk caused to agricultural production, a similar measure is taken, with the
percentage of cropland coverage and the percentage of forest coverage as indicators of productive
vulnerability.

Also, the coverage rate results are obtained from simulations of 14 locations in problem 1 to
quantify the propagation of the plant. The coverage rate is obtained from the entire simulation domain
(200 m× 200 m) instead of a 1-hectare semi-circle to eliminate the impact of different wind directions
on the spread of invasive species.

Apart from the above, social effects should also be taken into account. To quantify the effect of the
edibility and medicinal availability of invasive plants, the proportion of positive literature is accessed.
We formulate two search query templates for PubMed as

Query 1: <BOTANICAL NAME> AND (medicine OR food) NOT disease NOT risk;
Query 2: <BOTANICAL NAME> AND (disease OR risk) NOT medicine NOT food.

The number of retrieved articles npos through Query 1 is regarded as the number of positive literature,
while the number of articles nneg through Query 2 is the number of negative literature. Accessed on
6th November 2023, npos = 194 and nneg = 39 are for Taraxacum officinale (dandelion), npos = 40
and nneg = 6 are for Solidago canadensis, and npos = 21 and nneg = 14 are for Centaurea solstitialis.
The proportion of positive literature is calculated by npos/(npos+nneg) for each of the plants. Indeed,
the retrieved articles using Query 1 from PubMed may also contain negative articles and vice versa,
which might be room for improvement in the modeling.
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Besides these, the equivalent first-year agricultural impact is designed as

E =
P · rprop · Sarea

Scountry

, (6.1)

where P is the annual productional value of agriculture, forestry, and fishing of the country, rprop is
the propagation rate, Sarea is the resolution of the environmental data (55.659 km2), and Scountry is
the area of the country. The subjective score of economic dependence on the ecological environment
(which is decided based on the estimated proportion of ecological-related economic output value) is
also introduced here to evaluate the importance of environmental quality. Another fact that affects
people’s opinion on the invasive plant is the ornamental value of the plant, which is completely
subjectively decided based on our group discussion.

Finally, existing social conditions of the regions are considered as well, including the coverage
of urban areas and the Human Development Index, for they may partly support the intensity and
willingness the control invasive species driven by the country’s government.

The full list of our ISI system is shown in Table 6.1, where the abbreviations that will be used
below are illustrated. Here, the indicators with positive effects mean that they can reduce the negative
impact of invasive plants, and those with negative effects will make the condition worse.

Table 6.1: Invasive Species Indicators

Category Variable Abbreviation Effect ANP weight Data source
Growth environment αs (Sunshine growth coefficient) Gro1 - 0.0374 /

αh (Humidity growth coefficient) Gro2 - 0.0381 /
αpH (pH growth coefficient) Gro3 - 0.0615 /
αT (Temperature growth coefficient) Gro4 - 0.0423 /
mTPI (Multi-Scale Topographic Position Index) Gro5 + 0.0168 ERGo
Similarity of environmental conditions to origin Gro6 - 0.0242 Subjective

Ecological conditions NDVI (Normalized Difference Vegetation Index) Eco1 + 0.0138 Google Earth Engine
EVI (Enhanced Vegetation Index) Eco2 + 0.0238 Google Earth Engine
Ecosystem incompatibility Eco3 + 0.1122 Investigation-based subjective decision

Biodiversity vulnerability Topographic Diversity Bio1 + 0.0264 EGRo
Percentage of threatened plants Bio2 - 0.0222 OECD database
Loss of natural and semi-natural vegetated land since 2004 Bio3 - 0.0693 OECD database
Percentage of protected Areas Bio4 + 0.0183 OECD database

Productive vulnerability Percentage of cropland cover Prod1 - 0.1144 GEE
Percentage of forest cover Prod2 - 0.0268 World Bank database

Propagation Number related coverage rate in 12 months Prop1 - 0.0613 CA modeling results
Number related coverage rate in 6 months Prop2 - 0.0225 CA modeling results

Social impact Percentage of positive literature Soc1 + 0.0475 PubMed
Relative first-year Agricultural & forestry Impact Soc2 - 0.0448 World Bank (Processed)
Ornamental value Soc3 + 0.0193 Subjective decision
Economic dependence on ecological environment Soc4 - 0.0276 Investigation-based subjective decision

Existing social conditions HDI (Human Development Index) Ext1 + 0.0155 World Bank
Percentage of urban coverage Ext2 + 0.1127 World Bank

6.2 Modeling of the impact factor
6.2.1 Weighting of metrics using Analytic Network Process (ANP)

To better manually control the weight relationship between various indicators according to prior
knowledge, the ANP was used to conduct the indicator weighting process due to its universality and
flexibility, as well as the tolerance for non-independence and categorical complexity of indicators,
which is why we choose ANP over the Analytic Hierarchy Process (AHP), whose results may vary
due to the relationship between indicators.

Based on the connections of indicators (as shown in Fig. 6.1) and the prioritization of each
connection as well as the indicator categories (as shown in Table 6.1), computational results of the
ANP model can be generated by the Super Decisions (SD) software through an interactive procedure
that requires us to do pairwise importance comparison of indicators subjectively. Then the software
automatically analyzes the subjectively given relative importance among categories and indicators to
obtain weights of each indicator without further operating assistance.
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Figure 6.1: The connections of indicators used in the ANP modeling in the Super Decisions software.

6.2.2 Integration of indicators
The commonly used Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)

method is taken here to conduct the overall integration of values under multiple indicators. Below is
the process.
Step 1: Decision matrix construction.

After the data collection process, an evaluation matrix (xij)m×n of m alternatives (the selected
places) and n indicators (ISIs) is constructed, where xij is the value of the i-th alternative under the
j-th indicator.
Step 2: Data normalization.

To better quantify and integrate data under various indicators, a data normalization process is
executed. Using the Min-Max normalization with homotropization (transforming positive factors into
negative ones in this case):

xij =


maxi(xij)− xij

maxi(xij)−mini(xij)
, j ∈ I+

xij −mini(xij)

maxi(xij)−mini(xij)
, j ∈ I−

(6.2)

a normalized data matrix x = (xij)m×n can be obtained. I+ is the set of all positive indicators, and
I− is the set of all negative indicators, here I+

⋃
I− = I , where I is the set of all the ISI.

Step 3: Weighting the normalized decision matrix.

x̂ij = xij · wj, i = 1, 2, . . . ,m, j = 1, 2, . . . , n (6.3)

where wj is the weight of the ISIs obtained from ANP.
Step 4: Determination of ideal solutions.

The positive ideal solution S+ and the negative ideal solution S− can be determined as:

S+ = (max
i

si1,max
i

si2, . . . ,max
i

sin), i ∈ I+,

S− = (min
i

si1,min
i

si2, . . . ,min
i

sin), i ∈ I−,
(6.4)
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whose components are denoted by s+j and s−j , respectively.
Step 5: Calculation of the distance between each of the alternatives (data points) and the positive
ideal solutions.

D+
i =

√√√√ n∑
j=1

(sij − s+j )
2, i = 1, 2, . . . ,m (6.5)

Step 6: Calculation of the distances between the alternatives and the negative ideal solutions.

D−
i =

√√√√ n∑
j=1

(sij − s−j )
2, i = 1, 2, . . . ,m (6.6)

where D+
i and D−

i are L2-norm distances from the alternative i to the positive and negative ideal
solutions.
Step 7: Final Scoring.

fi =
D−

i

D−
i +D+

i

(6.7)

here 0 ≤ fi ≤ 1.
Step 8: Ranking of the alternatives.

The ranking of alternatives can be acquired according to fi (i = 1, 2, . . . ,m).
6.2.3 Determining the impact factor

The more data points we have, the more information we can provide to the judgment of ANP and
the key calculation of ideal solutions. With the convenient powerful data extraction method from
Google Earth Engine and other abundant datasets as well as the simulation, we are able to build up
a dataset with complete ISI records and fourteen locations. Each of the locations is used to perform
simulations for three plants, summing up to a dataset with 42 data points.

Note that each of the investigated plants is reported to have invaded 3 or 4 of these locations,
which is not used during the modeling so that can be an evaluation of the accuracy and effectiveness
of the modeling approach.

In our work, after normalization, we will split the 42 data points into the training set used to
obtain TOSIS parameters, and the testing test used to validate the performance of the model
to predict the impact factor. The training set contains 14 records of dandelion at 14 locations.
The testing set contains 28 records of Centaurea solstitialis and Solidago canadensis at 14 locations,
respectively.

The final impact factor of each data point that has all ISIs recorded or simulated, either new data
points or data points in the dataset, can be evaluated under the TOPSIS framework:

Impact Factor (IF) =
D−

D− +D+
, (6.8)

where D− and D+ are the distance of a data record to the negative ideal solution and the positive
ideal solution obtained from the training set.

6.3 Results and discussion
6.3.1 Results of weights from ANP

Weights and ranks of each ISI from ANP analysis are shown in Table 6.1 and illustrated in Fig.
6.2. The results can partially reflect our tendency when judging invasive plants and their impact.

The percentage of cropland cover (Prod1) reflects the current status of agricultural development,
which is directly and primarily relevant to the extent of destruction caused by invasive species, thus
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its weight when considering invasion is the highest among all the 23 indicators. Meanwhile, the
percentage of urban coverage (Ext2) shows the urbanization degree of the investigated location. If
the location is highly urbanized, the invasive plant will be immediately observed, and proper actions
will soon be taken by city or plant management departments, besides providing the spread of invasive
species with greater geographic barriers. The ecosystem incompatibility (Eco3) aims to evaluate the
potential ecological limitations on the spread and living of the invasive species, and its importance
is significant in both perspectives determining the impact of invasive species, which prompts us to
elevate its unique importance despite being a subjective indicator.

Although individual indicators from the growth environment category do not rank high, the sum
of all these indicators occupies over 20 percent of the total contribution. The growth ratio affects the
dispersion period, and further influences the final coverage.
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Figure 6.2: Weights of ISIs from ANP and proportion of each category.

6.3.2 Results of the Impact Factor
Using the training set (data points of dandelions) and weights from ISIs, the TOPSIS is performed,

and the normalized positive and negative ideal solutions can be obtained for further usage of the model.
The parameters obtained from TOPSIS including the ideal positive solution and the ideal negative
solution are applied for inference on the testing set. Results of impact factors are shown in Fig. 6.3.
For dandelions, TOPSIS accurately identifies two out of three locations that have reported the invasion
of dandelions, based on our carefully selected objective and subjective indicators and well-established
routine for weights of indicators. The predicted Impact Factor for the other two plants in all locations
also highlights the locations that have been invaded, suggesting the good generalization ability of our
model and the Impact Factor.

From the results of the three species above, it can be seen that in our established impact factor
evaluation system, 0.5 can be considered a perfect benchmark for determining whether a species
should be considered an invasive species in a particular region. This result has significant potential
implications in the field of invasive species identification and prevention. As for the accuracy and
universality of this standard, we weren’t able to obtain large-scale instance validation during the short
period of work, which will be carried out in more detailedly in our future work based on deeper
investigation.
6.3.3 Sensitivity analysis

To evaluate the sensitivity of the TOPSIS model, we perform the partial dependency analysis.
For each indicator, while fixing the values of others, the value of all data points of this indicator
changes from its lowest (0 after MinMax normalization) to its highest value (1 after normalization)
in a fixed step, and the evaluated impact factors are obtained during the process to build a partial
relationship between the average impact factor with the indicator. The results for all ISIs are shown in
Fig. 6.4. The built model is sensitive to changes in ecological conditions, existing social conditions,
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Figure 6.3: Results of Impact Factors for three investigated plants.

and productive vulnerability, mostly because of Eco3, Ext2, and Prod1, which is the reflection of our
weights shown in Fig. 6.2.
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Figure 6.4: Partial dependency plot.

6.3.4 Advantages and disadvantages
In modeling the impact factor of invasive species, we use ANP to quantify subjective judgments

and TOPSIS to construct the final model. Due to the sufficiency and objectiveness of the indicator
system (ISI), the model has achieved great overall stability and certainty, while maintaining the final
results of the same species in different regions to be of a certain degree of differentiation. The impact
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factor (the TOPSIS score) of a potential invasive species has a critical value of 0.5, which perfectly
matches the midpoint of the ideal solutions.

Nevertheless, due to limitations in time and resources, our analysis of the potential economic and
social impacts of invasive species did not use simulation predictions under actual models but used
estimates based on the current situation instead. In addition, the scoring of subjective evaluation
indicators may also be avoided by setting quantitative methods respectively, and hiring experts for
centralized discussions may help.

7 Conclusion
In our study, we build a model to explore the spread of dandelion and two other invasive plants. We

made some assumptions at the first of our study. We consider different factors influencing germination,
growth, and the spread of the dandelion. For this part, we mainly discuss the influence of temperature,
sunlight, and rainfall. By building a Cellular Automata model, we can visualize the spreading of
dandelions in a given period. Then to decide the contradictory influence the invasive plants have on
local areas, we make up a set of evaluating factors. Through normalizing the data and building the
weighting metrics, we can express the invasive ability and impact of a single plant by using an impact
factor. Our impact factor built from ANP and TOPSIS can accurately evaluate the invasion risk of a
location concerning the plant. We use two other plants that spread seeds through the wind: Centaurea
solstitialis and Solidago canadensis in our simulations and 14 worldwide locations to analyze the
sensitivity, validate the effectiveness of the model, and provide solid data source of indicators for the
impact factor evaluation.

By building the spreading model and evaluating factors, we can know the spreading pattern and
invasive ability of different plants. In this case, we can have a deeper understanding of the invasive
plants and make a better method to prevent them from destroying the ecosystem and economics of the
local area. What’s more, we can also make good use of these plants, and contribute to the increase of
living conditions of local citizens.

Limited by time and computing resources, we simplify influential factors and the simulation. The
results will be more promising with sufficient resources. Some influential factors are modeled using
empirical functions, which can be further determined through detailed experiments.

References
[1] P. R. MEZYNSKI and D. F. COLE: “Germination of Dandelion Seed on a Thermogradient

Plate” Weed Science, Volume 22, Issue 5, September (1974):506-507.
[2] Hoya, A., Shibaike, H., Morita, T. et al. Germination characteristics of native Japanese dandelion

autopolyploids and their putative diploid parent species. J Plant Res 120, 139–147 (2007).
[3] https://hort.extension.wisc.edu/articles/dandelion-taraxacum-officinale/
[4] Molina-Montenegro, Marco A., et al. "Higher plasticity in ecophysiological traits enhances the

performance and invasion success of Taraxacum officinale (dandelion) in alpine environments."
Biological Invasions 14 (2012): 21-33.

[5] Nathan, Ran, Uriel N. Safriel, and Imanuel Noy-Meir. "Field validation and sensitivity analysis
of a mechanistic model for tree seed dispersal by wind." Ecology 82.2 (2001): 374-388.

[6] https://www.westcoastseeds.com/blogs/wcs-academy/how-to-grow-dandelions
[7] https://www.johnnyseeds.com/growers-library/herbs/dandelion/dandelion-key-growing-

information.html
[8] https://www.nies.go.jp/biodiversity/invasive/DB/detail/80640e.html
[9] http://intl.ce.cn/gjzh/200605/24/t20060524_7074354.shtml

[10] https://home.nps.gov/kefj/blogs/fighting-the-insidious-invasion.htm
[11] Yonggang, Chen, Shiming, Wu, et al. Forest Pest and Disease 3 (2017): 36-37. (in Chinese)



Team # 13719 Page 23 of 23

[12] Julia, Roxana, David W. Holland, and Joseph Guenthner. "Assessing the economic impact of
invasive species: the case of yellow starthistle (Centaurea solsitialis L.) in the rangelands of
Idaho, USA." Journal of Environmental Management 85.4 (2007): 876-882.

[13] McIver, James, Robbin Thorp, and Karen Erickson. "Pollinators of the invasive plant, yellow
starthistle (Centaurea solstitialis), in north-eastern Oregon, USA." Weed biology and manage-
ment 9.2 (2009): 137-145.

[14] Renkai, Yan, et al., Hubei Plant Protection 200 (2023): 6-7. (in Chinese)
[15] Gusev, A. P. "The impact of invasive Canadian goldenrod (Solidago canadensis L.) on regenera-

tive succession in old fields (the Southeast of Belarus)." Russian Journal of Biological Invasions
6 (2015): 74-77.

[16] Wang, Congyan, et al. "Canada goldenrod invasion cause significant shifts in the taxonomic
diversity and community stability of plant communities in heterogeneous landscapes in urban
ecosystems in East China." Ecological Engineering 127 (2019): 504-509.

[17] Hoya, Akihiko, et al. "Germination characteristics of native Japanese dandelion autopolyploids
and their putative diploid parent species." Journal of Plant Research 120 (2007): 139-147.

[18] https://zhidao.baidu.com/question/568520260144584444.html (in Chinese)
[19] Sun, B.-H.; Guo, X.-L. Aerodynamic Shape and Drag Scaling Law of a Flexible Fi-

bre in a Flowing Medium. Theoretical and Applied Mechanics Letters 2023, 13, 100397,
doi:10.1016/j.taml.2022.100397.

[20] Iyer, V., Gaensbauer, H., Daniel, T.L. et al. Wind dispersal of battery-free wireless devices.
Nature 603, 427–433 (2022). https://doi.org/10.1038/s41586-021-04363-9

[21] WMO Guide to Meteorological Instruments and Methods of Observation WMO-No. 8 page
I.5-13

[22] https://data.oecd.org/biodiver/threatened-species.htm
[23] https://data.oecd.org/biodiver/land-cover-change.htm
[24] https://developers.google.com/earth-engine/datasets/catalog/

CSP_ERGo_1_0_Global_SRTM_topoDiversity#description
[25] https://data.oecd.org/biodiver/protected-areas.htm#indicator-chart
[26] https://databank.worldbank.org/metadataglossary/africa-development-

indicators/series/UNDP.HDI.XD
[27] Maheshwari, Shamoni, and Daniel A. Barbash. "The genetics of hybrid incompatibilities."

Annual review of genetics 45 (2011): 331-355.


	Introduction
	Background
	Problem Restatement
	Our work

	Assumptions and Justifications
	Variables
	Data acquisition
	Simulation of wind dispersion of plant seeds
	Influential variables
	The model of growth
	Germination probability
	Growth
	Wind dispersion
	Cellular Automata simulation

	Results and discussion
	Simulation
	Sensitivity analysis
	Advantages and disadvantages


	Modeling the impact of invasive species
	Invasive Species Indicators (ISI)
	Modeling of the impact factor
	Weighting of metrics using Analytic Network Process (ANP)
	Integration of indicators
	Determining the impact factor

	Results and discussion
	Results of weights from ANP
	Results of the Impact Factor
	Sensitivity analysis
	Advantages and disadvantages


	Conclusion

